
The interleukin-17 cytokine family: critical players in host defence
and inflammatory diseases

Introduction

The interleukin-17 (IL-17) cytokines are emerging as key

players in immune responses. The first member to be

identified, IL-17A, was originally cloned as cytotoxic

T-lymphocyte antigen-8, a gene sharing homology with

the HSV13 gene from herpesvirus Saimiri.1 Seminal work

by Yao et al.2 identified this gene as a cytokine, initially

designated as IL-17, and most recently as IL-17A, the pro-

totypic member of this family. The other members, IL-

17B to IL-17F were subsequently identified based on their

homology to IL-17A (Fig. 1).3 These proteins are highly

conserved at the C terminus, and contain five spatially

conserved cysteine residues that mediate dimerization.4

Members of the IL-17 receptor family, IL-17RA to

IL-17RE, mediate the biological functions of these cyto-

kines.3 Accumulating evidence indicates that these inter-

actions induce pro-inflammatory programmes.3

IL-17A and IL-17F

Interleukin-17A and IL-17F are 50% identical, and conse-

quently share many biological properties (Fig. 1). Both

cytokines are secreted as disulphide linked homodimers.

In addition, a heterodimeric species consisting of disul-

phide-linked IL-17A and IL-17F has also been identi-

fied.5,6 These proteins signal through a heterodimeric

receptor complex consisting of the IL-17RA and IL-17RC

chains, which is detected on a number of cells

(Table 2).3,7–9 Although these dimers stimulate many

overlapping pathways, the degree of induction varies

between the species, with the IL-17A homodimer promot-

ing more robust responses than the heterodimer or the

IL-17F homodimer.5,6,10,11

Multiple cell types express IL-17A and IL-17F

(Table 1).3,5,6,10,12 Much effort has been placed on under-

standing the biology of the CD4+ T helper type 17 (Th17)

subset, which is the predominant cell-type to produce

IL-17A and IL-17F. The Th17 cells are critical to the adap-

tive immune response against bacterial and fungal infec-

tions, and also contribute to the pathogenesis of several

inflammatory diseases.13 Differentiation of this subset

from naive CD4+ T cells is dependent on signals from IL-

6 and transforming growth factor-b, while maintenance of

this lineage requires IL-23 and IL-21.14–22 Interestingly, a

recent study by Ghoreschi et al.23 shows that pathogenic

Th17 cells can also be generated in a transforming growth

factor-b-independent manner. Understanding how these
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Summary

The interleukin-17 (IL-17) cytokines, IL-17A to IL-17F, are emerging as

critical players in host defence responses and inflammatory diseases. Sub-

stantial data support the role of these proteins in innate and adaptive

immunity. Of these family members, IL-17A, IL-17F and IL-17E have

been the best studied. Both IL-17A and IL-17F contribute to the host

response to extracellular bacteria and fungi, and IL-17E has been shown

to play a role in parasitic infections. In addition, numerous pre-clinical

and clinical studies link these proteins to the pathogenesis of inflamma-

tory diseases, and a number of therapeutic programmes targeting these

family members are in clinical development. This review will highlight the

cellular sources, receptors/target cells, and role in inflammation of these

and the less-characterized family members, IL-17B, IL-17C and IL-17D.
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different cytokine combinations contribute to the genera-

tion of Th17 cells during inflammation is an area of active

research. In addition to cytokines, commensal bacteria

also induce Th17 cells.24 Segmented filamentous bacteria

are potent inducers of Th17 cells in the lamina propria of

the small intestine, and antibiotic-mediated depletion of

these bacteria inhibits Th17 differentiation.25 These stimuli

activate a number of transcription factors to up-regulate

the il17a and il17f genes.22

Innate immune cells also contribute to the generation

of IL-17A and IL-17F.12 Lymphoid tissue inducer-like

cells, cd T cells, invariant natural killer T (iNKT) cells

and NKT cells secrete IL-17A in response to IL-23 and

bacterial products.12 Given the proximity of these cells to

mucosal barriers, the ability to generate IL-17A and IL-

17F in response to these stimuli may provide the first line

of defence against microbial infections.

Interleukin-17A and IL-17F promote tissue-mediated

innate immunity by triggering pro-inflammatory res-

ponses. These downstream targets can be divided into pro-

inflammatory chemokines (CXCL1, CXCL8, CXC

L10), cytokines [tumour necrosis factor-a (TNF-a), IL-1,

IL-6, and granulocyte–macrophage and granulocyte col-

ony-stimulating factors], anti-microbial peptides (mucins,

b-defensins, S100A7-9), and tissue remodelling and acute-

phase responses (SAA, MMP1, RANKL).26 Furthermore,

the combined action of IL-17A or IL-17F with other cyto-

kines such as TNF-a, IL-1b and interferon-c synergistically

augments the induction of pro-inflammatory responses

from various target cells.27–29 As both IL-17A and IL-17F

regulate neutrophil mobilization by promoting granulo-

poiesis, inflammation is observed when either cytokine is

over-expressed in vivo.26,30–33

In vivo studies substantiate the importance of these

cytokines in anti-microbial responses. Host defence path-

ways are impaired in mice that are deficient in either or

both cytokines. Infection of il17a)/), il17f)/) and il17a)/):

il17f)/) mice with either Citrobacter rodentium or Staphy-

lococcus aureus resulted in increased bacterial burden and

pathology, signifying the requirement of these cytokines

in defence against Gram-negative and Gram-positive bac-

teria.34,35 Clearance of the pulmonary pathogen Klebsiella

pneumoniae was also defective in il17a)/) mice.35 Theses

phenotypes are attributed to defective granulocyte colony-

stimulating factor responses, granulopoiesis, and neutro-

phil mobilization.35,36 Additional infection models reveal

the importance of this pathway in anti-fungal immunity.

Neutralizing IL-17A with a blocking antibody increases

fungal burden in a model of Pneumocystis carinii infec-

tion, while over-expressing IL-17A using an adenoviral

23% 17%29%25%

IL-17A IL-17A/F IL-17F IL-17B IL-17E/IL-25IL-17CIL-17D

50%

Figure 1. Homology of interleukin-17 (IL-17) family members to

IL-17A. The dendrogram indicates the percentage homology between

each of the IL-17 family members and IL-17A. IL-17F shares greater

homology with IL-17A, whereas other family members are more

divergent. Percentages reflect both mouse and human IL-17 family

members.

Table 2. Expression of interleukin-17 receptors

Cell type References

IL-17RA Ubiquitous 3,7–9

IL-17RB ckit+lin) 62,71–73

T helper type 9 74

Fibroblasts 75

T helper type 2 62

Basophils 59,62

IL-17RC Adipocytes 3,7,8

Chondrocytes 3,7

Fibroblasts 3

Epithelial cells 7,9

IL-17RD Epithelial cells 113

Endothelial cells 113

IL-17RE Undefined

Table 1. Cellular sources of interleukin-17 family members

Cell type References

IL-17A Th17 3,5,6,10

LTi 12

NK 12

iNKT 12

Mast cells 12

Neutrophils 12

cd T cells 12

IL-17B Chondrocytes 83,85–87

Neurons 84

IL-17C Epithelial cells 9,88

IL-17D Undefined

IL-17E Memory Th2 64

Eosinophils 64

Basophils 64

Mast cells 63

Epithelial cells 62,65

IL-17F Th17 3,5,6,10

LTi 12

NK 12

iNKT 12

Neutrophils 12

cd T cells 12

iNK, invariant natural killer; LTi, lymphoid tissue inducer-like cells;

NK, natural killer; Th17, T hlper type 17.
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system protects mice infected with lethal doses of Can-

dida albicans.37,38 Interleukin-17A also plays a role in

immunity to intracellular bacteria. However, il17a)/) mice

are not susceptible to primary infections with intracellular

bacterial pathogens such as Mycobacterium tuberculosis

and Listeria monocytogenes, which require Th1 immunity

for eradication. Instead, IL-17A is critical for the enhance-

ment of memory responses against these pathogens.35

Collectively, these studies demonstrate the importance of

these cytokines in host defence against bacteria and fungi.

Although these proteins play a protective role in host

defence, excessive activation of this pathway contributes

to autoimmunity.13 Both IL-17A and IL-17F are elevated

in multiple human autoimmune diseases (Table 3).9,34,39–46

Pre-clinical models of rheumatoid arthritis (RA), multiple

sclerosis (MS) and inflammatory bowel disease (IBD) sug-

gest that these proteins participate in disease pathogene-

sis, but the contribution of each cytokine to the

development of disease varies, with IL-17A playing a

more dominant role in RA and MS, whereas IL-17F is

more important in IBD.30,34,47 Expression of IL-17A in

the knee joint of mice with collagen-induced arthritis

exacerbated joint destruction and disease progression,

whereas the absence of IL-17A reduced disease activity in

pre-clinical models of RA.47–49 In contrast, analysis of

Il17f)/) suggests that this cytokine has a non-essential role

in the development of arthritis, despite displaying similar

pro-inflammatory properties as IL-17A in cultured RA

synoviocytes.34,46 Likewise, the clinical symptoms of

experimental autoimmune encephalomyelitis (EAE), a

murine model for MS, are reduced in il17a)/) mice and

in mice treated with an anti-IL-17A blocking anti-

body.30,33,50,51 Conversely, akin to what was observed in

the arthritis pre-clinical models, moderate improvement

in recovery from EAE is seen in Il17f)/) mice.30 Interest-

ingly, the detection of elevated levels of IL-17F in human

MS patients unresponsive to interferon-b, suggests that

IL-17F may play a more dominant role in inflammation

than that predicted by the mouse system.52 Further inves-

tigation is required to understand the role of IL-17F in

MS.

The contribution of IL-17A and IL-17F to IBD is

unclear, as pre-clinical models have yielded inconsistent

results. Studies using the dextran-sulphate-sodium-

induced colitis model suggest that IL-17A has a protective

role in the gut. Neutralization of IL-17A or genetic defi-

ciency of il17a exacerbated disease in this model.30,53

However, dextran-sulphate-sodium-treated il17f)/) mice

displayed reduced colitis.30 Conflicting results were

observed using a second model of IBD, the CD45RBhi

transfer model of colitis. One report corroborates a pro-

tective role for IL-17A whereas the other suggests that IL-

17A and IL-17F are pathogenic in this model.53,54 Addi-

tional studies are needed to resolve this discrepancy, in

particular, understanding how the intestinal microflora

shape Th17 cell differentiation and secretion of IL-17A

and IL-17F is necessary to understand the biology of these

molecules in homeostatic and disease states.

Interleukin-17A has also been implicated in inflamma-

tion associated with metabolic diseases. It is detected in T

cells from specimens of coronary atherosclerosis, and

patients with acute coronary syndrome display elevated

levels of circulating Th17 cells and cytokines.55 Blockade

of IL-17A decreases lesion size, lipid accumulation and

cellular infiltration in the apoE)/) models of atherosclero-

sis. Similarly, il17a)/) mice fed a high-fat diet also

develop fewer atherosclerotic lesions. Likewise, glucose

homeostasis is impaired in il17a)/) mice, an effect attrib-

uted to IL-17A signalling in adipocytes.8 How IL-17A

contributes to human atherosclerosis remains to be deter-

mined.

The pre-clinical and clinical data substantiate a key role

for IL-17A/F in host defence and inflammatory diseases,

and rationalize the development of therapeutics to target

this pathway. Multiple programmes targeting different

aspects of the IL-17 pathway are in clinical develop-

ment.56 Recent reports from Novartis and Eli Lilly indi-

cate that neutralization of IL-17A has therapeutic benefit

in autoimmune diseases. The efficacy and safety of the

Novartis molecule, AIN457, were investigated in phase I/

IIa trials in patients with psoriasis, RA or autoimmune

uveitis.57 Significant reductions in disease activity were

observed in patients with psoriasis or RA treated with

AIN457. In addition, positive responses to AIN457 were

Table 3. Interleukin-17 (IL-17) family cytokines and receptors in

human disease

Disease Expression References

IL-17A RA Elevated 46,89

IBD Elevated 40

Psoriasis Elevated 9,42,44

MS Elevated 41

Atherosclerosis Elevated 55

IL-17B Psoriasis Reduced 9

IL-17C Psoriasis Elevated 9

IL-17D Psoriasis Reduced 9

IL-17E Asthma Elevated 64,75

Atopic dermatitis Elevated 64

IBD Reduced 79

IL-17F RA Elevated 94–96

IBD Elevated 43

Psoriasis Elevated 9,42

IL-17RA RA Elevated 94,95

IBD Elevated 96

IL-17RB Asthma Elevated 64,107

Atopic dermatitis Elevated 64

IL-17RC RA Elevated 95

IBD, inflammatory bowel disease; MS, multiple sclerosis; RA, rheu-

matoid arthritis.

10 � 2011 Genentech, Inc. Immunology � 2011 Blackwell Publishing Ltd, Immunology, 134, 8–16
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observed in a proportion of uveitis patients. Likewise,

patients with RA treated with the Lilly drug, LY2439821,

also displayed improvements in the disease activity score

DAS28 and American College of Rheumatology core set

parameters.58 Further studies are needed to assess the

long-term efficacy of these therapies in these diseases and

other inflammatory disorders.

IL-17E (IL-25)

Interleukin-17E, or IL-25, is the most divergent cytokine

in the IL-17 family, sharing only 25–35% homology with

the other members (Fig. 1). Basal il17e RNA is broadly

expressed and can be augmented by allergens and infec-

tious agents.59–62 Inoculation of mice with the intestinal

nematode Nippostrongylus brasiliensis, promotes IL-17E

expression in the gastrointestinal tract, while exposure to

Aspergillus fumigatus, protease allergens, or ovalbumin

sensitization increases IL-17E expression in the lung.31

Multiple sources of IL-17E have been described

(Table 1).59,62–65

A combination of biochemical and genetic studies

reveal that IL-17E uses a heterodimeric complex consist-

ing of IL-17RA and IL-17RB (alternatively known as

IL-17Rh1, IL-17BR, IL-25R, or Evi27) for activity. Surface

plasmon resonance analyses revealed that IL-17RB binds

to IL-17E with high affinity.4 Although a direct physical

interaction between IL-17E and IL-17RA has not been

detected, association of IL-17RA with a pre-formed

IL-17E–IL-17RB complex was reported in the micromolar

range.66

In vivo studies indicate that IL-17E participates in the

Th2 immune response. Transgenic mice expressing IL-

17E under a liver-specific or myosin promoter display

eosinophilia and neutrophilia in the blood, and enhance

serum IgE, IgA, IgG1 and Th2 cytokines.60,67 Similar

results were observed in the bronchoalveolar lavage fluid

from mice expressing IL-17E under a lung-specific pro-

moter.68 Analyses of il17e)/) mice revealed the necessity

for this cytokine in the clearance of the Trichuris muris

and N. brasiliensis worms, both pathogens requiring Th2

immunity for eradication.69,70 In agreement with the

genetic data, N. brasiliensis is rapidly cleared upon in vivo

administration of IL-17E.69

Initial efforts to characterize the IL-17E target cells

responsible for Th2 immunity focused on using RNA and

protein analyses to identify IL-17RB+ populations. These

studies revealed expression of IL-17RB on haematopoietic

and non-haematopoietic populations (Table 2).59,64 How-

ever, understanding whether these cells represented true

IL-17E targets and how these cell-types participate in IL-

17E biology remained unclear. A major breakthrough in

the field came recently when several groups successfully

isolated individual populations of cells and demonstrated

both IL-17E responsiveness and dependence on functional

IL-17RB and IL-17RA. The use of murine reporter strains

for Th2 cytokines and a spectrum of lineage markers

enabled the characterization of the ckit+ lin) IL-17E-

responsive cells.71–73 Administration of recombinant

IL-17E to IL-13 or IL-4 e-GFP reporter mice resulted in a

robust expansion of these cells, primarily in the gastroin-

testinal tract, lymph nodes and spleen, with little detec-

tion in the bone marrow or blood. In addition, expansion

of this population is detected following N. brasiliensis

infection of wild-type mice, but not in il17ra)/), il17rb)/),

or in mice treated with anti-IL-17E blocking antibody,

demonstrating the requirement for intact IL-17E signalling

in these cells.72 Microarray analysis reveals that they induce

a distinct gene expression pattern from basophils and Th2

cells.73 Neill et al.71 demonstrated that this population is

also responsive to IL-33, and the combination of IL-17E

and IL-33 is required for efficient expulsion of the nema-

tode N. brasiliensis. Wild-type ckit+ lin) cells are sufficient

to provide Th2 immunity during parasitic infection. Adop-

tive transfer of these cells rescues the defects in worm clear-

ance seen in the il17rb)/), il17rb)/): st2)/) and the il4)/

):il13)/) infected with N. brasiliensis, and in the il17e)/)

strain infected with Trichuris muris.71,72 Furthermore, in vi-

tro differentiation studies suggest that this population has

multi-pluripotent potential and can give rise to mast cells,

basophils and macrophages.72

The Th9 subset was also identified as targets of

IL-17E.74 T helper type 9 cells express both IL-17RA and

IL-17RB and secrete IL-9 in response to IL-17E. It is sug-

gested that IL-9 participates in allergic inflammation.

Allergen challenge in il17e)/) mice resulted in decreased

IL-9, IL-4, IL-5 and IL-13 expression, which was accom-

panied by reduced disease. However, the specific roles of

IL-9 versus the conventional Th2 cytokines in this model

are unclear.

Consistent with a role in Th2 immunity, IL-17E is

implicated in the pathogenesis of allergic inflammation.

Expression of IL-17E is elevated in a number of Th2-dri-

ven diseases (Table 3).64,75 Intranasal instillation of mice

with IL-17E caused asthma-like symptoms, including

up-regulation of IL-4/5/13, eosinophil infiltration and

mucous production in the lung, and airway hyper-

responsiveness, while treatment with anti-IL-17E blocking

antibody prevented acute asthmatic symptoms in a mouse

model of lung inflammation.31,76 Interestingly, mice lack-

ing IL-4/5/9/13 still displayed asthmatic symptoms upon

intranasal injection of IL-17E, suggesting that IL-17E has

a unique pathway bypassing conventional Th2 cyto-

kines.76

Intriguingly, multiple studies suggest that the IL-17E

pathway dampens Th1 and Th17 responses. Immunization

of il17e)/) with myelin oligodendrocyte glycoprotein

(MOG) peptide augments both IL-17A expression and EAE

clinical scores, whereas administration of IL-17E to MOG-

treated mice ameliorated disease.77,78 Mechanistically, the

� 2011 Genentech, Inc. Immunology � 2011 Blackwell Publishing Ltd, Immunology, 134, 8–16 11
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effect of IL-17E on disease is linked to expression of IL-23

and IL-13. In the absence of IL-17E signals, IL-23, a critical

mediator of Th17 cell survival and maintenance, is elevated,

whereas the reduction in disease severity seen with IL-17E

treatment is linked to increased expression of IL-13, which

in turn blocks IL-23 secretion by dendritic cells, preventing

Th17 cell survival.77,78 Similarly, IL-17E inhibited Th1 cell-

driven colitis through blockade of IL-12 and IL-23 expres-

sion by CD14+ cells isolated from the inflamed gut of

patients with IBD.79 These studies together with the obser-

vation that IL-17E expression is down-regulated in the

inflamed colon tissue of patients with Crohn’s disease or

ulcerative colitis, suggest the possible use of IL-17E as a

therapeutic agent for IBD.79

IL-17B, IL-17C and IL-17D

The cellular source(s), receptor utilization and target cells

of the IL-17B, IL-17C and IL-17D family members are

poorly characterized. Initially discovered using database

searches for homology to IL-17A, it is unclear whether

these cytokines share similar biological properties

(Fig. 1).80–82 Based on sequence comparison to IL-17A it

is hypothesized that these family members also form

dimers, although biochemical analysis of IL-17B suggests

that it forms a tightly associated, non-disulphide linked

dimer, which is in contrast to what is observed with IL-

17A and IL-17F.82 How IL-17C and IL-17D behave is

undetermined. Although a specific high-affinity interac-

tion was observed between IL-17B and the IL-17RB sub-

unit using in vitro biochemical assays, the import of this

finding is unclear.82 Likewise, while IL-17C has been

reported to associate with IL-17RE, the functional signifi-

cance of this interaction has not been demonstrated.7 The

receptors for IL-17D are unknown.

Expression profiling has provided some information on

the cellular sources of these cytokines (Table 1). Expres-

sion of IL-17B protein has only been reported in neurons

and chondrocytes.81–86 Interleukin-1b treatment of bovine

cartilage explants promoted secretion of IL-17B,87 sug-

gesting that expression is modulated by pro-inflammatory

stimuli. Similarly, although basal IL-17C mRNA is unde-

tectable, significant induction is observed after exposure

to inflammatory signals.81 Tumour necrosis factor-a stim-

ulated IL-17C secretion from human keratinocytes,

whereas the TLR5 agonist, flagellin, promoted il17c

mRNA expression in murine colon tissues.9,88 Details of

IL-17D protein expression have been reported.80

Pre-clinical and clinical studies suggest that expression

of these family members is modulated by inflammation.

Both IL-17B and IL-17C were detected in the paws of

mice afflicted with collagen-induced arthritis, with IL-17B

exclusively found in chondrocytes while IL-17C was

detected in several populations of leucocytes.89 Interleu-

kin-17C was detected in lung and skin tissues following

Mycoplasma pneumoniae and S. aureus infections, respec-

tively.90,91 Furthermore, IL-17C was detected in lesional

psoriatic skin, but expression of IL-17B and IL-17D was

depressed (Table 3).9 It remains to be determined

whether the regulated expression of these family members

during inflammations contributes to the pathogenesis of

inflammatory diseases.

A number of studies suggest that these family mem-

bers may participate in host defence mechanisms. Pro-

inflammatory cytokines, including TNF-a and IL-1b,

were detected in a number of target cells, including

monocytes, fibroblasts and cells from the peritoneal cav-

ity, upon stimulation with IL-17B.81,89 Interleukin-17C

induced comparable responses in monocytes and fibro-

blasts.81,89 Additionally, human subepithelial myofibro-

blasts treated with IL-17B, IL-17C or IL-17D weakly

increased IL-6, IL-8, leukemia inhibitory factor, and

matrix metalloproteinase 3 secretion.92 Similar results

were observed in IL-17D-stimulated human endothelial

cells and chicken fibroblasts.80,93 Inflammatory responses

are also detected when IL-17B or IL-17C are over-

expressed in vivo. Analogous to IL-17A, ectopic expres-

sion of IL-17B or IL-17C promoted neutrophil mobiliza-

tion.31,82 Bone marrow chimeric mice over-expressing

IL-17B or IL-17C developed more severe collagen-

induced arthritis, and displayed elevated expression of

pro-inflammatory cytokines.89 The adoptive transfer of

CD4+ T cells transduced with IL-17B or IL-17C into col-

lagen-immunized mice also exacerbated disease, while

blocking treatment with an anti-IL-17B blocking anti-

body inhibited the progression of arthritis and bone

destruction in the collagen-induced arthritis model.89

Overall, data from both human and animal models sug-

gest that IL-17B, IL-17C and IL-17D might have a role

in inflammatory disease, which highlights the need to

further investigate their biological functions.

IL-17 receptors

The IL-17 receptor family represent a unique group of

proteins that share minimal structural homology and sig-

nal transduction properties with other receptors.7 Each

chain is composed of a single transmembrane domain, an

extracellular-fibronectin III-like (FnIII) domain and an

intracellular similar expression to FGF genes (SEF)/IL-

17R (SEFIR) domain. Membrane-bound and soluble ver-

sions of the receptors have been described, the latter

resulting from alternative splicing events. While the SEFIR

domain resembles the Toll-/IL-1R (TIR) domains found

in receptors of the innate immune system, structural dif-

ferences between the proteins preclude association of the

SEFIR domains with signalling components of the TIR

pathways. Upon ligand binding, the SEFIR domains

within the IL-17 receptors associate with other SEFIR-

containing proteins to initiate signalling cascades. As the

12 � 2011 Genentech, Inc. Immunology � 2011 Blackwell Publishing Ltd, Immunology, 134, 8–16
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signalling properties of this family were recently covered

in depth review, we will not be discussing this in further

detail, and will focus on the functional consequences of

these biochemical pathways.7

IL-17RA

Interleukin-17RA was first identified as the receptor for

IL-17A; however, subsequent studies have demonstrated

interaction with other family members. Although ubiqui-

tously expressed, the major focus of IL-17RA biology has

concentrated on stromal cells, which are the critical tar-

gets for IL-17A and IL-17F (Table 2). The regulation of

IL-17RA expression is not well studied but elevated

IL-17RA expression has been detected in human inflam-

matory diseases such as arthritic joints from patients with

RA, suggesting a role in autoimmunity.94,95 In accord

with these reports, risk haplotypes within the IL-17RA

gene that increase susceptibility to Crohn’s disease have

been identified by genetic studies.96

As discussed above, IL-17A and IL-17F require the IL-

17RA–IL-17RC complex for function. The absence of

either chain prevents cytokine-mediated pro-inflamma-

tory cytokine secretion.95 Biochemical measurements

revealed that the affinity between IL-17A and IL-17RA

was higher than that between IL-17RA and IL-17F, which

may explain the discrepancy between the potency of

IL-17A and IL-17F dimers.6,11,97

Structural analyses suggest that IL-17RA is a common

chain for a number of IL-17 family members. Whereas

the loss of IL-17RA inhibits IL-17E function, a require-

ment for this chain in IL-17B, IL-17C and IL-17D

responses has not been demonstrated.66,71,74,98

A critical role for IL-17RA in host defence has been

demonstrated using genetically deficient mice and block-

ing reagents. Neutrophil recruitment and granulopoiesis

are impaired in il17ra)/) mice rendering them susceptible

to microbial infections.36,37,99–101 The inability to mount

efficient immune responses protects these mice from

developing disease in pre-clinical models of arthritis, IBD

and influenza infection.100,102,103 Likewise, soluble ver-

sions of IL-17RA confer protection from allograft rejec-

tion, joint-damage in models of arthritis and Chlamydia

infection.104–106 However, given the emerging data dem-

onstrating the importance of IL-17RA in other cytokines,

it is difficult to conclude that the effects of this reagent

are solely the result of inhibition of IL-17A and IL-17F.66

Further studies are required to evaluate this molecule

in vivo.

IL-17RB

The IL-17RB chain was identified through screening of

expressed sequence tag databases for IL-17RA-like mole-

cules. As described above, both IL-17B and IL-17E bind

to IL-17RB in vitro.61,82 Expression of IL-17RB is detected

in lung, kidney, bone and fetal liver tissues.82 Interleukin-

17RB is detected on multiple cell types and receptor

expression is augmented by inflammatory signals

(Table 2). Cross-linking the T-cell receptor, addition of

the IL-7/15 cytokines, or co-culturing with dendritic cells

stimulated with thymic stromal lymphoprotein, augment

IL-17RB expression in memory Th2 cells.64 Likewise, the

addition of IL-33 and/or IL-17E enhances IL-17RB

expression on the ckit+ lin) cells, suggesting that receptor

expression is partly regulated by an autocrine feedback

loop.71 As described above, the IL-17RA–IL-17RB com-

plex is required for IL-17E activity. The IL-17E-mediated

Th2 responses are inhibited in the absence of either

chain.71,74,98 In agreement with the pre-clinical data signi-

fying a role in Th2 biology, elevated expression of IL-

17RB is detected in human asthmatic lung tissue, and the

5661G-A polymorphism within the IL-17RB gene, has

been identified to be protective against asthma.64,107

IL-17RC

Database mining for proteins homologous to IL-17RA led

to the identification of IL-17RC.97 Biochemical analyses

demonstrate high-affinity interactions between IL-17RC–

IL-17A and IL-17RC–IL-17F.66 There have been no

reports of IL-17RC binding to other IL-17 family mem-

bers. Similar to IL-17RA, IL-17RC expression is elevated

in patients with RA, emphasizing the role of this pathway

in autoimmune disease pathology.94,95 Intriguingly, alter-

native splice variants of IL-17RC have been detected in

prostrate cancer tumours, but the function of these pro-

teins is unclear.108,109

The function of IL-17RC has only been reported in the

context of IL-17A and IL-17F biology. In agreement with

the essential role for IL-17RC in IL-17A and IL-17F

responses, genetic deletion or antibody-mediated blockade

of this chain abrogates IL-17A and IL-17F responses such

as pro-inflammatory cytokine induction.11,110 Similar to

the il17ra)/) mice, il17rc)/)mice display delayed onset

and milder disease in the MOG-EAE model, and

increased susceptibility to fungal infections.111,112

IL-17RD and IL-17RE

The biology of these IL-17R family members, which were

also identified through database searches, is unknown.

Interleukin-17RD was detected in endothelial cells and

epithelial cells (Table 2).113 Similar to IL-17RB and

IL-17RC, IL-17RD has also been demonstrated to co-

localize and complex with IL-17RA.114 Biochemical data

suggest that this interaction mediates IL-17A function, as

mutations within the cytoplasmic domain of IL-17RD

prevent IL-17A induction of the 24p3 luciferase repor-

ter.114 Other studies suggest that this receptor may have
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inhibitory effects, as over-expression suppresses fibroblast

growth factor-mediated Ras and phosphatidyl inositol 3-

kinase signalling. The significance of IL-17RD in vivo

remains to be determined.

Likewise, the biology of IL-17RE is undetermined. It

has been reported that IL-17C binds to IL-17RE, although

the import of this interaction is not understood.7 The

specific cellular populations that are IL-17RE+ have not

been defined.115 Although multiple splice variants of the

IL-17RE gene have been identified, the biological signifi-

cance of these isoforms is unknown.115 A role in MAPK

activation has been detected, but further studies are

required to understand the significance of this observa-

tion.

Conclusions and future directions

Although substantial efforts have elucidated the biological

functions of this unique family, there is still much to be

discovered. In particular, the significance of the newer

family members in host defence and inflammation needs

to be addressed. Understanding how these proteins mod-

ulate inflammation in the disease setting will be beneficial

for development of new therapies.
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